Precise Location Matching Improves Dense Contrastive Learning in Digital Pathology
نویسندگان
چکیده
Dense prediction tasks such as segmentation and detection of pathological entities hold crucial clinical value in computational pathology workflows. However, obtaining dense annotations on large cohorts is usually tedious expensive. Contrastive learning (CL) thus often employed to leverage volumes unlabeled data pre-train the backbone network. To boost CL for prediction, some studies have proposed variations matching objectives pre-training. our analysis shows that employing existing strategies histopathology images enforces invariance among incorrect pairs features and, thus, imprecise. address this, we propose a precise location-based mechanism utilizes overlapping information between geometric transformations precisely match regions two augmentations. Extensive experiments pretraining datasets (TCGA-BRCA, NCT-CRC-HE) three downstream (GlaS, CRAG, BCSS) highlight superiority method semantic instance tasks. Our outperforms previous methods by up 7.2% average precision 5.6% Additionally, using popular contrastive frameworks, MoCo-v2, VICRegL, ConCL, improved 0.7% 5.2%, 4.0%, demonstrating generalizability. code available at https://github.com/cvlab-stonybrook/PLM_SSL .
منابع مشابه
fault location in power distribution networks using matching algorithm
چکیده رساله/پایان نامه : تاکنون روشهای متعددی در ارتباط با مکان یابی خطا در شبکه انتقال ارائه شده است. استفاده مستقیم از این روشها در شبکه توزیع به دلایلی همچون وجود انشعابهای متعدد، غیر یکنواختی فیدرها (خطوط کابلی، خطوط هوایی، سطح مقطع متفاوت انشعاب ها و تنه اصلی فیدر)، نامتعادلی (عدم جابجا شدگی خطوط، بارهای تکفاز و سه فاز)، ثابت نبودن بار و اندازه گیری مقادیر ولتاژ و جریان فقط در ابتدای...
Precise Target Location Using Image Matching Technique
An algorithmic concept is presented using an image matching technique to solve a task in the field of industrial metrology. Aim of the procedure is to automatically locate targets in metric images under difficult practical conditions. The algorithm has to substitute human knowledge, which is normally used in the process of manual measurements and is necessary to establish an accurate and reliab...
متن کاملOptimizing Disparity Candidates Space in Dense Stereo Matching
In this paper, a new approach for optimizing disparity candidates space is proposed for the solution of dense stereo matching problem. The main objectives of this approachare the reduction of average number of disparity candidates per pixel with low computational cost and high assurance of retaining the correct answer. These can be realized due to the effective use of multiple radial windows, i...
متن کاملClustering Analysis for Semi-supervised Learning Improves Classification Performance of Digital Pathology
Purpose: Completely labeled datasets of pathology slides are often difficult and time consuming to obtain. Semi-supervised learning methods are able to learn reliable models from small number of labeled instances and large quantities of unlabeled data. In this paper, we explored the potential of clustering analysis for semi-supervised support vector machine (SVM) classifier. Method: A clusterin...
متن کاملFaithful Contrastive Features in Learning
This article pursues the idea of inferring aspects of phonological underlying forms directly from surface contrasts by looking at optimality theoretic linguistic systems (Prince & Smolensky, 1993/2004). The main result proves that linguistic systems satisfying certain conditions have the faithful contrastive feature property: Whenever 2 distinct morphemes contrast on the surface in a particular...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Lecture Notes in Computer Science
سال: 2023
ISSN: ['1611-3349', '0302-9743']
DOI: https://doi.org/10.1007/978-3-031-34048-2_60